
NASA/CR- 1999-208978

ICASE Report No. 99-2

Object-oriented Design for Sparse Direct Solvers

Florin Dobrian

Old Dominion University, Norfolk, Virginia

Gary Kumfert and Alex Pothen

Old Dominion University, Norfolk, Virginia

and

ICASE, Hampton, Virginia

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA

Operated by Universities Space Research Association

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-2199

Prepared for Langley Research Center
under Contract NAS 1-97046

January 1999

Available from the following:

NASA Center for AeroSpace Information (CASI)

7121 Standard Drive

Hanover, MD 21076-1320

(301) 621-0390

National Technical lnfo mation Service (NTIS)

5285 Port Royal Road

Springfield, VA 22161-2171

(703) 487-4650

OBJECT-ORIENTED DESIGN FOR SPARSE DIRECT SOLVERS*

FLORIN DOBRIAN t, GARY KUMFERT t, AND ALEX POTHEN$

Abstract. We discuss the object-oriented design of a software package for solving sparse, symmetric

systems of equations (positive definite and indefinite) by direct methods. At the highest layers, we decouple

data structure classes from algorithmic classes for flexibility. Wc describe the important structural and

algorithmic classes in our design, and discuss the trade-offs we made for high performance. Thc kernels at

the lower layers were optimized by hand. Our results show no performance loss from our object-oriented

design, while providing flexibility, ease of use, and extensibility over solvers using procedural design.

1. Introduction. The problem of solving linear systems of equations Ax ---- b, where the coefficient

matrix is sparse and symmetric, represents the core of many scientific, engineering and financial applications.

In our research, wc investigate algorithmic aspects of high performance direct solvers for sparse symmetric

systems, focusing on parallel and out-of-core computations. Since we are interested in quickly prototyping our

ideas and testing them, wc decided to build a software package for such experimentation. High performance

is a major design goal, in addition to requiring our software to be highly flexible and easy to use.

Sparse direct solvers use sophisticated data structures and algorithms; at the same time, most software

packages using direct solutions for sparse systems were written in Fortran 77. These programs arc difficult

to understand and difficult to use, modify, and extend due to several reasons: First, the lack of abstract

data typcs and encapsulation leads to global data structures scattered among software components, causing

tight coupling and poor cohesion. Second, the lack of abstract data types and dynamic memory allocation

leads to function calls with long argument lists, many arguments having no relevance in the context of the

corresponding function calls. In addition, some memory may be wasted because all allocations arc static.

We have implemented a sparse direct solver using different programming languages at different layers.

We have reaped the benefits of object-oriented design (OOD) and the support that C++ provides for OOD,

at the highest layer, and the speed of Fortran 77 at the lower levels. The resulting code is more maintainable,

usable, and extensible but suffers no performance penalty over a native Fortran 77 code. To the best of our

knowledge, this work represents the first object-oriented design of a sparse direct solver.

Wc chose C++ as a programming language since it has full support for object-oriented design, yet it

does not enforce it. The flexibility of C++ allows a software designer to choose the appropriate tools for

each particular software component. Another candidate could have been Fortran 90, but it does not have

inheritance and polymorphism. Wc need inheritance in several cases outlined later. We also wish to derive

new classes for a parallel version of our code. We do not want to replicate data and behavior that is common

to some classes. As for polymorphism, there are several situations when we declare just the interfaces in a

base class and we want to let derived classes implement a proper behavior.

"This work was partially supported by the National Science Foundation grants CCR-9412698 and DMS-9807172, by the

Department of Energy grant DE-FG05-94ER25216, and by thc National Aeronautics and Space Administration under NASA

Contract No. NAS1-97046 while the third author was in residence at the Institute for Computer Applications in Science and

Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-2199.

t Departmcnt of Computer Science, Old Dominion University, Norfolk, VA 23529-0162. Emaih dobrian@cs, odu.edu.

SDepartment of Computer Science, Old Dominion University, Norfolk, VA 23529-0162, and ICASE, NASA Langley Re-

search Center, Hampton VA 23681-2199. Emaih {kumfert, pothen}_cs.odu.edu, {kumfert, pothen}©icase.edu. URL:

www. cs. odu. edu/~pothen.

In this paper we present the design of our sequential solv,_r. Work on a parallel version using the

nmssage-passing model is in progress. Object-oriented packages fi,r iterative methods are described in [1, 2].

2. Overview of the problem. Graph theory provides usefll tools for computing the solution of sparse

systems. Corresponding to a symmetric matrix A is its undirected adjacency graph G(A). Each vertex in

the graph corresponds to a column (or row) in the matrix and each edge to a symmetric pair of off-diagonal

nonzero entries.

The factorization of A can bc modeled as the elimination of vertices in its adjacency graph. The

factorization adds edges to G(A), creating a new graph G + (A, P), where P is a permutation that describes

the order in which the columns of A are eliminated. Edges in G- not present in G arc called fill edges and

they correspond to fill elements, nonzero entries in the filled mati'ix L+D+L T that arc zero in A.

The computation of the solution begins thus by looking for an ordering that reduces the fill. Several

heuristic algorithms (variants of minimum degree or nested dissection) may be used during this step. The

result is a permutation P.

Next, an elimination forest F(A, P), a spanning forest of _7+(A, P), is computed. The elimination

forest represents the dependencies in the computation, and is vitai in organizing the factorization step. Even

though it is a spanning forest of the filled graph, it can be compilted directly from the graph of A and the

permutation P, without computing the filled graph. In practice, a compressed version of the elimination

forest is employed. Vertices that share a common adjacency se_ in the filled graph are grouped together

to form supernodcs. Vertices in a supernodc appear contiguomly in the elimination forest, and hence a

supernodal version of the elimination forest can be used.

The factorization step is split in two phases: symbolic and r.umerical. The first computes the nonzero

structure of the factors and the second computes the numerical values. The symbolic factorization can

be computed efficiently using the supernodal elimination forest: The multifrontal method for numerical

factorization processes the elimination forest in postorder. CorreSponding to each supernode are two dense

matrices: a frontal matrix and an update matrix. Entries in the ori _inal matrix and updates from the children

of a supernode are assembled into the frontal matrix of a supcr_lode, and then partial dense factorization

is performed on the frontal matrix to compute factor entries. The factored columns are written to the

factor matrix, and the remaining columns constitute the update matrix that carries updates higher in the

elimination forest.

Finally, the solution is computed by a sequence of triangular _tnd diagonal solves. Additional solve steps

with the computed factors (iterative refinement) may be used to reduce the error if it is large.

When the coefficient matrix is positive definite, there is no reed to pivot during the factorization. For

indefinite matrices, pivoting is required for stability. Hence the p,_rmutation computed by the ordering step

is modified during the factorization.

Additional details about the graph model may be found in [3] about the multifrontal method in [4]; and

about indefinite factorizations in [5].

3. Design of the higher layers. At the higher layers of ot:r software, the goal was to make the code

easy to understand, use, modify and extend. Different users ha_ e different needs: Some wish to minimize

the intellectual effort required to understand the package, other., wish to have more control. Accordingly,

there must bc different amounts of iifformation a user has to dca: with, and different levels of functionality

a user is exposed to.

At thehighestlevel,auserisawareofonlythreeentities:thecoefficientmatrixA, the right hand side

vector b, and the unknown vector x. Thus a user could call a solver as follows:

x = Compute (A, b),

expecting the solver to make the right choices. Of course it is difficult to achieve optimal results with such

limited control, so a more experienced user would prefer to see more functionality. Such a user knows that

the computation of the solution involves three main steps: (1) ordering, to preserve sparsity and thus to

reduce work and storage requirements, (2) factorization, to decompose the reordered coefficient matrix into

a product of factors from which the solution can be computed easily, and (3) solve, to compute the solution

from the factors. This user would then like to perform something like this:

P = Order(A),

(L, D, P) = Factor (A, P),

ac = Solve (L, D, P, b).

Here, P is a permutation matrix that trades sparsity for stability, L is a unit lower triangular or block unit

lower triangular matrix, and D is a diagonal or block diagonal matrix.

At this level the user has enough control to experiment with different algorithms for each one of these

steps. The user could choose a minimum degree or a nested dissection ordering, a left-looking or a multifrontal

factorization. In addition, the user may choose to run some of the steps more than once to solve many related

systems of equations, or for iterative refinement to reduce the error.

We organized the higher layers of our software as a collection of classes that belong to one inheritance tree.

At the root of the tree we put the Object class, which handles errors and provides a debugging interface.

Then, since the two basic software components are data structures and algorithms, and since dccoupling

them achieves flexibility, we derived a DataStructure class and an Algorithm class from Object. The first one

handles general information about all structural objeets and the second one deals with the execution of all

algorithmic objects.

An important observation is necessary here. While full decoupling needs perfect encapsulation, the

overhead introduced by some interfaces may be too high. Thus performance reasons forced us to weaken

the encapsulation allowing more knowledge about several objects. For sparse matrices, for example, we

store the data (indices and values) column-wise, in a set of arrays. We allow other objects to retrieve these

arrays, making them aware of the internal representation of a sparse matrix. Wc protect the data from

being corrupted by providing non-const access only to functions that need to change the data. Such a design

implementation may be unacceptable for an object-oriented purist. However, a little discipline from the user

in accessing such objects is not a high price for a significant gain in performance.

A user who does not want to go beyond the high level of functionality of the main steps required to

compute the solution sees the following structural classes: SparseSymmMatrix, Vector, Permutation and

SparseLwTrMatrix. The first class describes coefficient matrices, the second right hand side and solution

vectors, the third permutations, and the fourth both triangular and diagonal factors. We decided to couple

these last two because they are always accessed together and a tight coupling between them leads to higher

performance without any significant loss in understanding the code. The derivation of these four classes

from DataStructure is shown in Fig. 3.1.

At the same level the user also sees several algorithmic classes. First there are various ordering algo-

rithms, such as NestDissOrder or MultMinDegOrder. Then there are factorization algorithms, like PosDe-

fLeftLookFactor, PosDefMultFrtFactor or IndefMultFrtFactor. Finally, the solve step can be performed by

DataStructure

SparseSymmMalrix Permutation] l SparseLwTrl__la_-_
Vector

FIG. 3.1. High level structural c_asses

Algorithm lw_

MultMinDegOrder [PosDefMultFrtFactor] PosDefSolve

FIG. 3.2. Some high level algorithm:ic classes

PosDefSolve or IndefSolve algorithms. Figure 3.2 describes thq derivation of some of these classes from

Algorithm. Using them one can easily write a solver (positive definite, for concreteness) shown in Fig. 3.

More details are available beyond this level of functionality. The factorization is split in two phases:

symbolic and numerical. The symbolic factorization is guided by an elimination forest. The multifrontal

method for numerical factorization uses an update stack and sev(ral frontal and update matrices, which are

dense and symmetric. Pivoting strategies for indefinite systems c_n be controlled at the level of frontal and

update matrices during the numerical factorization phase. Figures 3.4 and 3.5 depict the derivation of the

corresponding structural and algorithmic classes.

Classes such as SparseSymmMatrix, SparseLwTrMatrix, and Permutation arc implemented with multiple

arrays of differing sizes. Several of these are arrays of indices that index into the other arrays, so that the

validity of the state of a class depends on not only the individual i lternal arrays, but the interaction between

several of them.

In a conventional sparse solver, these arrays arc global and some of them are declared in different

modules. A coefficient matrix, a factor, a permutation, or an elimination forest is not a well defined entity

but the sum of scattered data. This inhibits software maintenance because of the tight coupling between

disparate compilational units.

There are also significant benefits in terms of type safety. For iilstance, a permutation is often represented

as an array of integers. It could be that the index of the old nm aber holds the new position or vice versa.

We use oldToNew and newToOld to refer to the two arrays. Th(problem is that intcrprcting a newToOld

permutation as an oldToNew permutation yields a valid operaticn, though an incorrcct permutation. It is

easy for users to reverse these two, particularly when the names ;'permutation" and "inverse permutation"

are applied since there is no agreement on whether newToOld is _he former or thc latter. Our Permutation

class maintains both arrays internally and supplies each on dema_ld.

4. Design of the lower layers. While the larger part of ol r code deals with the design of thc higher

layers, most of the CPU time is actually spent in few computation tlly intensive loops. No advanced software

paradigms arc needed at this level so we concentrated on performance by carefully implementing these loops.

A major problem with C++ (also with C) is pointer aliasilg, which makes code optimization more

difficult for a compiler. We gct around this problem by makirg local copies of simple variables in our

kernel code. Another source of performance loss is complex numl,ers, since they are not a built-in in C++

main()

{

/* Load the coefficient matrix and the right hand side vector. */

SparseSymmMatrix a("a.mat");

Vector b("b.vec");

/* Reorder the matrix to reduce fill.

Permutation p(a.getSize());

MultMinDegOrder order(a, p);

order.run();

,/

/* Factor the reordered matrix. */

SparseLwTrMatrix l(a.getSize());

PosDefMultFrtFactor factor(a, p, i);

factor.run();

/* Solve triangular systems of equations. */

Vector x(a.getSize());

PosDefSolve solve(l, p, b, x);

solve.run();

/* Save the solution. */

x.save("x.vec");

FIG. 3.3. A dzrect solver for sparse, symmetric positive definite problems at the highest level

ElimForest

DataStructure

DenseSymmMatrix l UpdateStack

FrontalMatrix UpdateMatrix

FIC. 3.4. Structural classes used by the multifrontal numerical factorization algorithms

data type as in Fortran. There is a template complex class in the Standard C++ library. Though this

gives the compiler enough information to enforce all the rules as if it were a built-in datatype, it does not

(indeed cannot) give the compiler any information about how to optimize for this class as if it were a built-in

datatype.

We implemented our computationally intensive kernels both in C++ and Fortran 77. A choice between

these kcrncls and between real and complex arithmetic can be made using compile-time switches. We defined

our own class for complex numbers but we make minimal use of complex arithmetic operators, which arc

Algorithm ._[
T _ _

SymFactor] l PosDeiMultFrtNu mFactor IndefMuhFrtNumFactor

FIG. 3.5. Some symbolic and numerical factoriza_ion algorithmic classes

TABLE 5.1

Performance on an IBM RS/6000 for three sets of problems from fluid d_mamics and acoustics. The cputimes (in seconds)

and performance for the numerical factortzation step are reported.

Problem

grid9.63

grid9.127

grid9.255

helmholtz0

helmholtzl

hehnholtz2

e20r0000

e30r0000

e40r0000

n m m q time Mflop/s

3,969 15,500 104,630 0.77 34.2

16,129 63,756 552,87] 1.70 41.6

65,025 258,572 2,717,31:; 10.89 47.4

4,224 24,512 130,501, 0.77 62.3

16,640 98,176 639,36,: 4.72 77.8

66,048 392,960 3,043,07t_ 30.88 90.8

4,241 64,185 369,843 1.70 35.8

9,661 149,416 1,133,75!* 6.56 40.2

17,281 270,367 2,451,48{* 17.77 43.6

overloaded. The bulk of the computation is performed either in C++ kernels written in C-like style or in

Fortran 77 kernels. Currently, we obtain better results with the lbrtran 77 kernels.

5. Results. We report results obtained on a 66MHz IBM RS/6000 machine with 256 MB main mem-

ory, 128 KB L1 data cache and 2MB L2 cache, running AIX 4.2. Since this machine has two floating point

functional units, each one capable of issuing one fused multiply-a,td instruction every cycle, its peak perfor-

mance is theoretically 266 Mflop/s. We used the Fortran 77 kernc s and we compiled the code with xlC 3.1.4

(-03 -qarch=pwr2) and xlf 5.1 (-04 -qarch=pwr2).

We show results for three types of problems: two-dimensio: lal nine-point grids, Hclmholtz problems,

and Stokes problems, using multiple minimum degree ordering and multifrontal factorization. We use the

following notation: n is the number of vertices in G(A), (this is tie order of the matrix), m is the number of

edges in G(A), and m + is the number of edges in G + (A, P), the fiqed graph. The difference between m + and

m represents the fill. In Table 5.1 we describe each problem using these three numbers and we also provide

the cputime and the performance for the numerical factorization step, generally the most expensive step of

the computation. Higher performance is obtained for the Helmh _ltz problems because complex arithmetic

leads to better use of registers and caches than real arithmetic. We achieved performance comparable to other

solvers, written completely in Fortran 77. Hence there is no perfo finance penalty due to the object-oriented

design of our solver.

We are currently implementing the solver in parallel using the message-passing paradigm. We plan to

derive new classes to deal with the parallehsm. Consider FrontaIAfatvix class, which stores the global indices

in the index array and the numerical values in the value array. A ParFrontalMatrix class would need to add

a processor array to store the owner of each column. A ParUpda:eMatrix class may be derived in a similar

way from UpdateMatrix. Some parallel algorithmic classes would be needed as well.

REFERENCES

[1]S. BALAY, W. D. GROPP, L. C. MCINNES, AND B. F. SMITH, Efficient management of parallelism

in object-oriented numerical software libraries, in Modern Software Tools in Scientific Computing,

Birkhauser Press, 1997.

[2] A. M. BRUASET AND H. P. LANGTANGEN, Object-oriented design of preconditioned iterative methods

in Diffpack, ACM Trans. Math. Software (1997), pp. 50 80.

[3] A. GEORGE AND J. W. H. LIU, Computer Solution of Large Sparse Positive Definite Systems, Prentice

Hall, 1981.

[4] A. POTHEN AND C. SUN, A distributed multiffontal algorithm using clique trees, Technical Report

CS-91-24, Computer Science, Penn State, Aug. 1991.

[5] C. ASHCRAFT, J. LEWIS, AND R. GRIMES, Accurate symmetric indefinite linear equation solvers,

Prcprint, Boeing Information Sciences, 1995. To appear in SIAM J. Matrix Analysis and its Appli-

cations.

[6] E. ARGE, A. M. BRUASET, AND H. P. LANGTANGEN, Object-oriented numerics, in Numerical Methods

and Software Tools in Industrial Mathematics, Birkhauser, pp. 7 26, 1997.

[7] G. BOOCH, Object-Oriented Analysis and Design with Applications. Benjamin Cummings Publishing

Company, second edition, 1994.

FormApprovedREPORT DOCUMENTATION PAGE
OMB No. 0704-0188

Publicreportingburdenforthiscollectionofinformationisestimatedtoaverage1 hourperresponse,includlg thetime forreviewinginstructions,searchingexistingdatasources,
gatheringandmaintainingthedataneeded,andcompletingandreviewingthecollectionofinformationSenJcommentsregardingthisburdenestimateoranyotheraspectofthis
collectionofinformation,includingsuggestionsfor reducingthis burden,toWashingtonHeadquartersServics, Directoratefor InformationOperationsandReports,1215Jefferson
DavisHighway,Suite1204,Arlington,VA 22202-4302,andto theOfficeofManagementandBudget,Pap_rworkReductionProject(0704-0188),Washington,DC20503

1. AGENCY USE ONLY(Leaveblank) 2. REPORT DATE

January 1999

4. TITLE AND SUBTITLE

Object-oriented design for sparse direct solvers

6. AUTHOR(S)
Florin Dobrian

Gary Kumfert

Alex Pothcn

1. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science and Engineering

Mail Stop 403, NASA Langley Research Center

Hampton, VA 23681-2199

3. REPOR'" TYPE AND DATES COVERED

Contractor Report

5. FUNDING NUMBERS

C NA51-97046

WU 505-90-52-01

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-2199

8. PERFORMING ORGANIZATION
REPORT NUMBER

ICASE Report No. 99-2

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA/CR-1999-208978

ICASE Report No. 99-2

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell

Final Report

In Computing in Object-oriented Parallel Environments, Lecture Notes in Com)uter Science 1505.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified Unlinlited

Subject Category 60, 61

Distribution: Nonstandard

Availability: NASA-CASI (301) 621-0390

13. ABSTRACT (Maximum 200 words)

We discu_ the object-oriented design of a software package for soving sparse, symmetric systems of equations
(positive defnite and indefinite) by direct methods. At the highest 1 _yers, we decouple data structure classes from

algorithmic classes for flexibility. We describe the important structural and algorithmic classes in our design, and

discuss the trade-offs we made for high perfornlance. The kernels at the lower layers were optimized by hand.

Our results show no performance loss from our object-oriented design, while providing flexibility, ease of use, and
extensibility over solvers using procedural design.

14. SUBJECT TERMS

object-oriented design; sparse matrices; Cholesky factorization;

symmetric indefnite matrices

17. SECURITY CLASSIFICATION
OF REPORT
Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION 19. SECUR TY CLASSIFICATION
OF THIS PAGE OF ABe-TRACT
Unclassified

15. NUMBER OF PAGES

12

16. PRICE CODE

A03
20. LIMITATION

OF ABSTRACT

_tandard Form 298(Rev. 2-89)
Prescribed by ANSI Std, Z39-18

298-102

